ADAPTIVE LEARNING

Models

References

- Cheung, Y. and D. Friedman: Individual Learning in Normal Form Games: Some Laboratory Results, Games and Economic Behavior, 19 (1997), 46-76.
- Camerer, C. and T. Ho: Experience Weighted Attraction Learning in Normal Form Games, *Econometrica*, 67 (1999), 827-63.
- Ioannou, C., and J. Romero: A Generalized Approach to Belief Learning in Repeated Games, Games and Economic Behavior, 87 (2014), 178-203.

MOTIVATION

- Which models describe human behavior best?
- Why is this important?
 - Design effective and efficient market mechanisms.
 - Apply counterfactual analysis.
 - Refine strategy sets.

Types of Adaptive Action Learning Models

- Belief-based Models
 - Fictitious Play Brown (1951)
 - Cournot Best Response Cournot (1960)
 - γ -Weighted Beliefs Cheung & Friedman (1997)
- Reinforcement-based Models
 - Cumulative Reinforcement Harley (1981), Erev & Roth (1995, 1998)
 - Averaged Reinforcement Mookerjhee & Sopher (1994, 1997)
- Hybridized Models
 - Experience Weighted Attraction (EWA) Camerer & Ho (1999)
 - Inertia, Sampling And Weighting (I-SAW) Nevo & Erev (2012)

Preliminaries

- The set of players is denoted by $I = \{1, ..., n\}$.
- Each player $i \in I$ has an action set denoted by \mathcal{A}_i . An action profile $a = (a_i, a_{-i})$ consists of the action of player i and the actions of the other players, denoted by $a_{-i} = (a_1, ..., a_{i-1}, a_{i+1}, ..., a_n) \in \mathcal{A}_{-i}$.
- In addition, each player i has a real-valued, stage-game, payoff function $g_i: \mathcal{A} \to \mathbb{R}$, which maps every action profile $a \in \mathcal{A}$ into a payoff for i, where \mathcal{A} denotes the cartesian product of the action spaces \mathcal{A}_i , written as $\mathcal{A} \equiv \underset{i=1}{\overset{I}{\times}} \mathcal{A}_i$.
- The indicator function $I\left(a_i^j,a_i(t)\right)$ equals 1 if $a_i^j=a_i(t)$ and 0 otherwise.
- In the infinitely-repeated game with *perfect monitoring*, the stage game in each time period $t=0,1,\ldots$ is played with the action profile chosen in period t publicly observed at the end of that period.

Preliminaries

- The *history* of play at time t is denoted by $h^t=(a^0,...,a^{t-1})\in\mathcal{A}^t$, where $a^r=(a^r_1,...,a^r_n)$ denotes the actions taken in period r.
- The set of histories is given by

$$\mathcal{H} = \bigcup_{t=0}^{\infty} \mathcal{A}^t,$$

where we define the initial history to the null set $A^0 = \{\emptyset\}$.

- A strategy $s_i \in S_i$ for player i is, then, a function $s_i : \mathcal{H} \to \mathcal{A}_i$, where the strategy space of i consists of K_i discrete strategies; that is, $S_i = \{s_i^1, s_i^2, ..., s_i^{K_i}\}$.
- The set of joint-strategy profiles is denoted by $S = S_1 \times \cdots \times S_n$.
- Each player i has a payoff function $\pi_i^t: S \to \mathbb{R}$, which represents the average payoff per period.

EXPERIENCE WEIGHTED ATTRACTION (EWA)

• Attraction for player *i*'s action is updated as follows:

$$N\left(t\right) =\rho\cdot N\left(t-1\right) +1,$$

$$A_{i}^{j}(t) = \frac{\phi \cdot N\left(t-1\right) A_{i}^{j}\left(t-1\right) + \left[\delta + \left(1-\delta\right) \mathbb{I}\left(a_{i}^{j}, a_{i}(t)\right)\right] g_{i}\left(a_{i}^{j}, a_{-i}(t)\right)}{N\left(t\right)}$$

- ϕ discount factor on previous attractions
- ullet ho discount factor on previous experience
- δ weight on forgone (hypothetical) payoffs
- Players choose an action each period with

$$P_i^j(t+1) = \frac{e^{\lambda \cdot A_i^j(t)}}{\sum_{k=1}^{m_i} e^{\lambda \cdot A_i^k(t)}}.$$

NESTED MODELS

φ	δ	ρ	N(0)	Learning Model	
1	1	1	-	Fictitious Play	
0	1	0	-	Cournot Best-Response	
$\phi \in (0,1)$	1	ϕ	-	Weighted Fictitious Play	
$\phi \in [0,1]$	0	0	1	Cumulative Reinforcement	
$\phi \in [0,1]$	0	ϕ	$\frac{1}{1-\phi}$	Averaged Reinforcement	

- EWA fits experimental data better than belief-learning and reinforcement-learning models in:
 - · constant-sum games with a unique mixed equilibrium,
 - · coordination games with multiple Pareto-ranked equilibria, and

 beauty contest games with a unique dominance-solvable equilibrium.

Self-Tuning EWA

• Attraction for player *i*'s action is updated as follows:

$$N(t) = \phi_i(t) \cdot N(t-1) + 1,$$

$$A_{i}^{j}(t) = \frac{\phi_{i}(t) \cdot N\left(t-1\right) A_{i}^{j}\left(t-1\right) + \left[\delta_{i}^{j}(t) + \left(1-\delta_{i}^{j}(t)\right) I\left(a_{i}^{j}, a_{i}(t)\right)\right] g_{i}\left(a_{i}^{j}, a_{-i}(t)\right)}{N\left(t\right)}$$

- The model makes parameters ϕ , δ , and ρ self-tuning functions.
- Players choose an action each period with

$$P_{i}^{j}(t+1) = \frac{e^{\lambda \cdot A_{i}^{j}(t)}}{\sum_{k=1}^{m_{i}} e^{\lambda \cdot A_{i}^{k}(t)}}.$$

Self-Tuning Functions

• The attention function, $\delta_i^j(t)$, is

$$\delta_{i}^{j}(t) = \begin{cases} 1 & \text{if } g_{i}\left(a_{i}^{j}, a_{-i}(t)\right) \geq g_{i}\left(t\right) \\ 0 & \text{otherwise.} \end{cases}$$

- The decay function, $\phi_i(t)$, consists of
 - the cumulative history vector across the other players' actions k, which records the historical frequencies (including the last period t) of the choices by other players

$$\sigma(a_{-i}^k, t) = \frac{1}{t} \sum_{\tau=1}^t I(a_{-i}^k, a_{-i}(\tau)),$$

so that the surprise index is

$$S_i(t) = \sum_{k=1}^{m-i} (\sigma(a_{-i}^k, t) - r(a_{-i}^k, t))^2.$$

• Finally, the decay function is

$$\phi_i(t) = 1 - \frac{1}{2} \mathcal{S}_i(t).$$

INERTIA, SAMPLING AND WEIGHTING (I-SAW)

- I-SAW is an instance-based model, which allows for three response modes: *exploration*, *inertia* and *exploitation*.
- In each period, a player enters one of the modes with different probabilities.
- There are *n* players in the game.
- Each player has a set of parameters $(p_A, \varepsilon_i, \pi_i, \mu_i, \rho_i, \omega_i)$.
- The parameter $p_A \in [0,1]$ is the same for all agents.
- The other parameters are idiosyncratic with $\varepsilon_i \sim U\left[0,\varepsilon\right]$, $\pi_i \sim U\left[0,\pi\right]$, $\mu_i \sim U\left[0,\mu\right]$, $\rho_i \sim U\left[0,\rho\right]$ and $\omega_i \sim U\left[0,\omega\right]$.

INERTIA, SAMPLING AND WEIGHTING (I-SAW)

- For simplicity, assume two actions.
- Player *i*'s action set is $A_i = \{A, B\}$.
- Let a_i^t be the action of player i that was played in period t, where $h_i\left(t_1,t_2\right)=\left\{a_i^{t_1},a_i^{t_1+1},\ldots,a_i^{t_2}\right\}$ for $t_1\leq t_2.$
- Similarly, let a_{-i}^t be the actions of players other than i in period t, where $h_{-i}\left(t_1,t_2\right)=\left\{a_{-i}^{t_1},a_{-i}^{t_1+1},\ldots,a_{-i}^{t_2}\right\}$ for $t_1\leq t_2.$
- We explain next the three response modes.

SCHEMATIC OF I-SAW

EXPLORATION

• In exploration, each player chooses action A with probability p_A and action B with probability $1-p_A$. The probabilities are the same for all players.

INERTIA

• A player might enter the inertia mode after period 2 with probability $\pi_i^{Surprise(t)}$, where $\pi_i \in [0,1]$ and $Surprise(t) \in [0,1]$. Specifically,

$$Gap(t) =$$

$$\frac{1}{4} \left[\sum_{j=1}^{2} |Obtained_j(t-1) - Obtained_j(t)| + \sum_{j=1}^{2} |GMean_j(t) - Obtained_j(t)| \right]$$

$$Surprise(t) = \frac{Gap(t)}{MeanGap(t) + Gap(t)}$$

$$MeanGap(t+1) = MeanGap(t)(1 - \frac{1}{r}) + Gap(t)\frac{1}{r}$$

where r is the expected number of trials in the experiment.

EXPLOITATION

- In exploitation trials, an individual selects the action with the highest Estimated Subjective Value (ESV).
- To determine the ESV, player i randomly selects μ_i elements from $h_{-i}\left(0,t-1\right)$ with replacement; let us call this set $M_{-i}\left(0,t-1\right)$.
- This set is chosen according to the following: with probability ρ_i player chooses a_{-i}^{t-1} and with probability $1-\rho_{-i}$ player chooses uniformly over h_{-i} (0,t-1).
- The same set M_{-i} is used for each $a_i \in A_i$.
- The sample mean for action a'_i is then defined as

$$SampleM(a'_{i}, t) = \frac{1}{|M_{-i}(0, t-1)|} \sum_{a_{-i} \in M_{-i}(0, t-1)} g_{i}(a'_{i}, a_{-i}).$$

EXPLOITATION

• The $GrandM(a'_i, t)$ is defined as

$$GrandM(a'_{i},t) = \frac{1}{|h_{-i}(0,t-1)|} \sum_{a_{-i} \in h_{-i}(0,t-1)} g_{i}(a'_{i},a_{-i}).$$

- Then, player i's ESV of action a_i' is $ESV\left(a_i'\right) = (1-\omega_i) \cdot SampleM(a_i',t) + \omega_i \cdot GrandM(a_i',t),$ where ω is the weight assigned on the payoff based on the entire history (GrandM) and $1-\omega$ is the weight assigned on the payoff based on the sample from the history (SampleM).
- Then, the player simply chooses the a_i' that maximizes ESV (and chooses randomly in ties).

γ -Weighted Beliefs

 A player updates his beliefs on the opponent's actions with parameter γ; that is,

$$b_i\left(a_{-i}^k, t\right) = \frac{\mathbb{I}\left(a_{-i}^k = a_{-i}(t)\right) + \sum_{r=1}^{t-1} \gamma^{t-r} \mathbb{I}\left(a_{-i}^k = a_{-i}(r)\right)}{1 + \sum_{r=1}^{t-1} \gamma^{t-r}}.$$

- Setting $\gamma=0$ yields the Cournot learning rule, and setting $\gamma=1$ yields fictitious play.
- We have adaptive learning when $0 < \gamma < 1$.
- ullet He then calculates the expected payoff of action a_i^j as

$$E_i(a_i^j, t) = \sum_{k=1}^{m_{-i}} b_i \left(a_{-i}^k, t \right) g_i \left(a_i^j, a_{-i}^k \right).$$

γ -Weighted Beliefs

• Finally, an action is selected via the logit specification with parameter λ ; that is, the probability of choosing action a_i^j in period t+1 is

$$\mathbb{P}_i\left(a_i^j, t+1\right) = \frac{e^{\lambda \cdot E_i\left(a_i^j, t\right)}}{\sum_{k=1}^{m_i} e^{\lambda \cdot E_i\left(a_i^k, t\right)}}.$$

WHY NOT REPEATED-GAME STRATEGY LEARNING MODELS?

Incorporating a richer specification of strategies is important because stage-game strategies are not always the most natural candidates for the strategies that players learn about.

Camerer and Ho (1999)

- 1 The set of possible strategies in repeated games is infinite.
- 2 Beliefs become more complex because several different strategies can lead to the same history.
- 3 Repeated-game strategies need several periods to be evaluated.

A GENERALIZED APPROACH

- We propose novel rules to facilitate operability of belief learning models with repeated-game strategies.
- The impact of the rules is assessed on a self-tuning Experience Weighted Attraction model, a γ -Weighted Beliefs model and an Inertia, Sampling and Weighting model.
- The predictions of the three models with strategy learning are validated with experimental data in four symmetric games.
- We also validate the predictions of their respective models with actions.
- The strategy learning models approximate subjects' behavior substantially better than their respective action learning models.

DETERMINISTIC FINITE AUTOMATA (DFA)

- A Moore Machine is a four-tuple (Q_i,q_i^0,f_i, au_i) where
 - Q_i is a finite set of states,
 - q_i^0 is the initial state,
 - $f_i:Q_i\to \mathcal{A}_i$ is an output function, and
 - $\tau_i: Q_i \times \mathcal{A}_{-i} \to Q_i$ is a transition function.

$$Q_{i} = \{q_{1}, q_{2}\}$$

$$q_{i}^{0} = q_{1}$$

$$f_{i}(q) = \begin{cases} A & \text{if } q = q_{1} \\ B & \text{if } q = q_{2} \end{cases}$$

$$\tau_{i}(q, a_{-i}) = \begin{cases} q_{1} & \text{if } (q, a_{-i}) = (q_{1}, A) \\ q_{2} & \text{otherwise} \end{cases}$$

FITNESS FUNCTION

• Define the fitness function $\mathcal{F}: S_{-i} \times \mathbb{N} \to [0, \mathcal{T}_i(\chi)]$ as

$$\mathcal{F}\left(s_{-i},\chi\right) = \max\left\{t'|s_{-i} \text{ is consistent with } h^{\mathcal{T}_i(\chi)} \text{ for the last } t' \text{ periods}\right\}.$$

• Define the belief function $\mathcal{B}: S_{-i} \times \mathbb{N} \to [0,1]$ as

$$\mathcal{B}(s_{-i},\chi) = \frac{\mathcal{F}(s_{-i},\chi)}{\sum_{r \in S_{-i}} \mathcal{F}(r,\chi)},$$

• which can be interpreted as player i's belief that the other player was using strategy s_{-i} at the end of block χ .

Asynchronous Updating of Strategies

- Players update their strategies with the completion of a block of periods.
- The probability of updating depends on the expected block length, which is calculated at the end of each period.
 - The probability that player i updates his strategy in period t, $\frac{1}{\mathcal{P}_i^t}$, is therefore determined endogenously via the expected length of the block term, \mathcal{P}_i^t , which is updated recursively:

$$\mathcal{P}_{i}^{t} = \mathcal{P}_{i}^{t-1} - \frac{1}{\mathcal{P}_{i}^{t-1}} \frac{\left| \frac{1}{t - \underline{t}(\chi(t))} \sum_{s = \underline{t}(\chi(t))}^{t-1} g_{i}(a_{i}^{s}, a_{-i}^{s}) - \mathcal{E}_{i}^{s_{i}(\chi(t))} \left(\chi(t)\right) \right|}{\bar{g} - \underline{g}}$$

SELF-TUNING EWA WITH STRATEGIES

The model consists of two variables:

- ① $N_i(\chi)$ is interpreted as the number of observation-equivalents of past experience in block χ of player i, and
- 2 $A_i^j(\chi)$ indicates player i's attraction to strategy j after the χ^{th} block of periods.

The evolution of learning over the χ^{th} block with $\chi \geq 1$ is governed by the following rules:

$$N_i(\chi) = \phi_i(\chi) \cdot N_i(\chi - 1) + 1,$$

and

$$A_{i}^{j}\left(\chi\right) = \frac{\phi_{i}(\chi) \cdot N_{i}\left(\chi - 1\right) \cdot A_{i}^{j}\left(\chi - 1\right) + \mathbb{I}\left(s_{i}^{j}, s_{i}\left(\chi\right)\right) \cdot R_{i}\left(\chi\right) + \delta_{i}^{j}\left(\chi\right) \cdot \mathcal{E}_{i}^{j}\left(\chi\right)}{N_{i}\left(\chi\right)}$$

Attractions are updated by

$$A_{i}^{j}\left(\chi\right) = \frac{\phi_{i}(\chi) \cdot N_{i}\left(\chi - 1\right) \cdot A_{i}^{j}\left(\chi - 1\right) + \mathbb{I}(s_{i}^{j}, s_{i}\left(\chi\right)) \cdot R_{i}\left(\chi\right) + \delta_{i}^{j}\left(\chi\right) \cdot \mathcal{E}_{i}^{j}\left(\chi\right)}{\phi_{i}(\chi) \cdot N_{i}\left(\chi - 1\right) + 1}$$

- χ is the block index,
- $R_i(\chi)$ is the reinforcement payoff from block χ ,
- $\mathcal{E}_i^j(\chi)$ is the forgone payoff from block χ ,
- $\delta_i^j(\chi)$ is the self-tuning attention function, and
- $\phi_i(\chi)$ is the self-tuning decay function.
- ullet Players choose strategy at the beginning of block $\chi+1$ with

$$\mathbb{P}_{i}^{j}(\chi+1) = \frac{e^{\lambda \cdot A_{i}^{j}(\chi)}}{\sum_{k}^{K} e^{\lambda \cdot A_{i}^{k}(\chi)}}.$$

REINFORCEMENT AND FOREGONE PAYOFFS

Reinforcement Payoffs

$$R_{i}(\chi) = \frac{1}{T_{i}(\chi)} \sum_{a \in h(\chi)} g_{i}(a)$$

- Forgone Payoffs
 - Define the fitness function

$$\mathcal{F}\left(s_{-i},\chi\right) = \max\left\{t'|s_{-i} \text{ is consistent with } h(\chi) \text{ for the last } t' \text{ periods}\right\}.$$

 The belief of player i that the other played s_{-i} when the history was h and player i played s_i, is

$$\mathcal{B}(s_{-i},\chi) = \frac{\mathcal{F}(s_{-i},\chi)}{\sum_{x \in S} \mathcal{F}(r,\chi)}.$$

The forgone payoff is

$$\mathcal{E}_i^j(\chi) = \sum_{\substack{s_{-i} \in S_{-i} \\ i}} \pi_i(s_i^j, s_{-i}) \cdot \mathcal{B}(s_{-i}, \chi).$$

Self-tuning Functions

• The attention function is

$$\delta_i^j(\chi) = \begin{cases} 1 & \text{if } \mathcal{E}_i^j(\chi) \ge R_i(\chi) \text{ and } s_i^j \ne s_i(\chi) \\ 0 & \text{otherwise.} \end{cases}$$

- The decay function, $\phi_i(\chi)$, consists of
 - the averaged belief which is

$$\sigma(s_{-i}, \chi) = \frac{1}{\chi} \sum_{j=1}^{\chi} \mathcal{B}(s_{-i}, j),$$

• so that the surprise index is

$$S_i(\chi) = \sum_{s_{-i} \in S_{-i}} (\sigma(s_{-i}, \chi) - \mathcal{B}(s_{-i}, \chi))^2.$$

• The decay function is

$$\phi_i(\chi) = 1 - \frac{1}{2}S_i(\chi).$$

γ -Weighted Beliefs with Strategies

• The attractions in this model evolve according to the following two rules and parameter γ :

$$N_i(\chi) = \gamma \cdot N_i(\chi - 1) + 1,$$

and

$$A_{i}^{j}\left(\chi\right) = \frac{\gamma \cdot N_{i}\left(\chi - 1\right) \cdot A_{i}^{j}\left(\chi - 1\right) + \mathcal{E}_{i}^{j}\left(\chi\right)}{N_{i}\left(\chi\right)}.$$

ullet A player chooses strategy at the beginning of block $\chi+1$ with

$$\mathbb{P}_{i}^{j}(\chi+1) = \frac{e^{\lambda \cdot A_{i}^{j}(\chi)}}{\sum_{k}^{K} e^{\lambda \cdot A_{i}^{k}(\chi)}}.$$

I-SAW WITH STRATEGIES

- Exploration: A strategy is randomly selected.
- Inertia: The probability is $(1 \frac{1}{\mathcal{P}_i^t})$ rather than $\pi_i^{Surprise}$.
- Exploitation: The grand mean is

$$GrandM_i\left(s^j,\chi\right) = \frac{1}{\chi} \sum_{k=1}^{\chi} \mathcal{E}_i^j(k).$$

Let $M_i(\chi)$ be a set of μ_i numbers drawn with replacement from $\{1, 2, \dots, \chi\}$. Then, the sample mean is

$$Sample M_i\left(s^j,\chi\right) = \frac{1}{|M_i(\chi)|} \sum_{k \in M_i(\chi)} \mathcal{E}_i^j(k).$$

Finally, the ESV is calculated as

$$ESV_i\left(s^j,\chi\right) = (1 - \omega_i) \cdot Sample M_i\left(s^j,\chi\right) + \omega_i \cdot Grand M\left(s^j,\chi\right).$$

SIMULATIONS

- In the first (pre-experimental) phase, players engage in a lengthy process of learning among strategies.
- Each pair of agents stay matched until the average payoff of the given pair converges.
- The second (experimental) phase consists of a fixed-pair matching of 100 periods.
- The results are averaged over 1,000 simulations.

A	1,1	۷,٦		
В	4,2	1,1		
	Battle of	the Sexes		
	Α	В		
Α	3,3	1,4		

В

24

Stag-Hunt

1,1

2.0

В

Chicken

0.0

4,1

STRATEGY SET

PRISONER'S DILEMMA

BATTLE OF THE SEXES

STAG-HUNT

CHICKEN

Phase II

ACTION LEARNING

STEWA

 γ -WB

I-SAW

Human Subjects

WHICH IS BETTER? FORMAL EVIDENCE

$$D\left(\pi\right) = \varepsilon \left\lfloor \frac{\pi}{\varepsilon} \right\rceil$$

- π is the payoff,
- ε is the accuracy of the discretization,
- $D(\pi)$ denotes the transformed payoff, and
- [·] rounds the fraction to the nearest integer.

	ST	EWA	γ -	WB	I-SAW	
Game	Action	Strategy	Action	Strategy	Action	Strategy
PD	0.532	0.228	0.535	0.237	0.486	0.257
BoS	0.642	0.126	0.580	0.153	0.531	0.455
SH	0.191	0.165	0.782	0.122	0.614	0.140
СН	0.698	0.326	0.679	0.381	0.773	0.221
Total	2.064	0.846	2.575	0.893	2.404	1.073

ROBUSTNESS CHECK

FITNESS FUNCTION 1

FITNESS FUNCTION 2

SYNCHRONOUS UPDATING OF STRATEGIES

Christos A. Ioannou

43/46

Inferred Rules of Behavior

	havior	Equivalent Automata	Prisoner's Dilemma	Battle of the Sexes	Stag-Hunt	Chicken
	1 1	4,19 Tit-For-Tat				
	1 1	6 Grim-Trigger				
(1)	a a	3,18 AA or B Once				
(1)		16 BA Triggers A				
	n 1	5,20 Win-Stay,Lose-Shift				
		17 BB Triggers A				
(d)	1 B	1,15 Quick B, Then A				
(2)	Å B B B B B B B B B B B B B B B B B B B	12,25 BB or A Once				
(1)	 •	10 AA Triggers B				
(A)	-AB -B	2,14 Quick A, Then B				#
	AB (1)	11,24 Alternations				
STEWA. γ-WB						

CONTRIBUTION

Our suggested modeling framework:

- 1 accommodates a richer specification of strategies,
- 2 is consistent with belief-learning,
- 3 allows asynchronous updating of strategies,
- 4 is flexible enough to incorporate larger strategy sets, and
- **5** makes no a priori assumptions on social preferences.

FUTURE WORK

- Incomplete information
- Random matching protocols
- Cut-off strategies
- Asymmetric payoffs
- Small amounts of errors